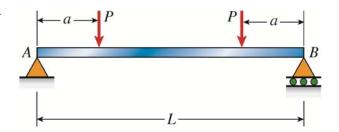
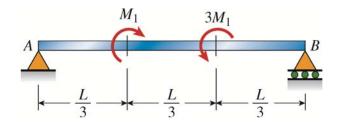
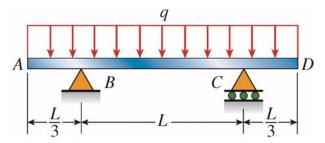

四造二甲材料力學 HW11


4.3-4 Calculate the shear force V and bending moment M at a cross section located 0.5 m from the fixed support of the cantilever beam AB shown in the figure.

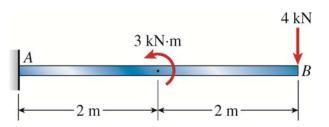
- **4.3-13** Beam *ABCD* represents a reinforced-concrete foundation beam that supports a uniform load of intensity $q_1 = 40 \text{ kN} \cdot \text{m}$ (see figure). Assume that the soil pressure on the underside of the beam is uniformly distributed with intensity q_2 .
- (a) Find the shear force V_B and bending moment M_B at point B.
- (b) Find the shear force V_m and bending moment M_m at the midpoint of the beam.



4.5-1 Draw the shear-force and bending-moment diagrams for a simple beam AB supporting two equal concentrated loads P (see figure).


4.5-6 A simple beam AB subjected to couples M_1 and $3M_1$ acting at the third points is shown in the figure.

Draw the shear-force and bending-moment diagrams for this beam.



4.5-9 Beam ABCD is simply supported at B and C and has overhangs at each end (see figure). The span length is L and each overhang has length L/3. A uniform load of intensity q acts along the entire length of the beam.

Draw the shear-force and bending-moment diagrams for this beam.

4.5-13 A cantilever beam *AB* supports a couple and a concentrated load, as shown in the figure. Draw the shear-force and bending-moment diagrams for this beam.

