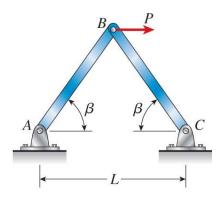
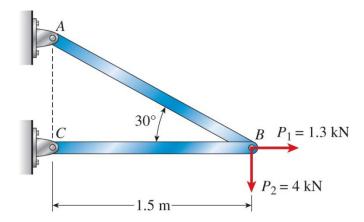
材料力學 作業 6

學號		
	. •	

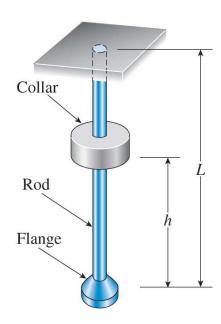

姓名:_____

- **2.7-1** A prismatic bar AD of length L, cross-sectional area A, and modulus of elasticity E is subjected to loads 5P, 3P, and P acting at points B, C, and D, respectively (see figure). Segments AB, BC, and CD have lengths L/6, L/2, and L/3, respectively.
 - (a) Obtain a formula for the strain energy U of the bar.
 - (b) Calculate the strain energy if P = 27 kN, L = 130 cm,

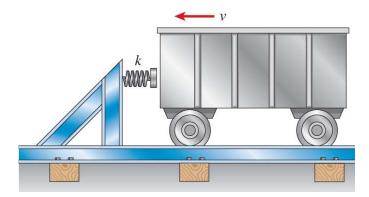

 $A = 18cm^2$, and the material is aluminum with 72 GPa.

	5 <i>P</i>	3P				P
-	→	-	→			→
A B			C		D	
$\lfloor L \rfloor$	L			L		
$\overline{6}$	2			3		

- **2.7-6** The truss ABC shown in the figure is subjected to a horizontal load P at joint B. The two bars are identical with cross-sectional area A and modulus of elasticity E.
- (a) Determine the strain energy U of the truss if the angle $\beta = 60^{\circ}$.
- (b) Determine the horizontal displacement δ_B of joint B by equating the strain energy of the truss to the work done by the load.

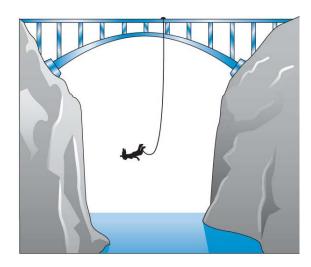


- **2.7-7** The truss ABC shown in the figure supports a horizontal load $P_1 = 1.3 \,\mathrm{kN}$ and a vertical load $P_2 = 4 \,\mathrm{kN}$. Both bars have cross-sectional area $A = 1500 \,\mathrm{mm}^2$ and are made of steel with $E = 200 \,\mathrm{GPa}$.
- (a) Determine the strain energy U_1 of the truss when the load P_1 acts alone ($P_2=0$).
- (b) Determine the strain energy U_2 when the load P_2 acts alone $(P_1 = 0)$.
- (c) Determine the strain energy $\,U_3$ when both loads act simultaneously.



2.8-1 A sliding collar of weight $W = 650 \,\mathrm{N}$ falls from a height h = 50 mm onto a flange at the bottom of a slender vertical rod (see figure). The rod has length $L = 1.2 \,\mathrm{m}$, cross-sectional area $A = 5 cm^2$, and modulus of elasticity $E = 210 \,\mathrm{GPa}$.

Calculate the following quantities: (a) the maximum downward displacement of the flange, (b) the maximum tensile stress in the rod, and (c) the impact factor.



2.8-11 A bumper for a mine car is constructed with a spring of stiffness k = 176 kN/m (see figure). If a car weighing 14 kN is traveling at velocity v = 8 km/h when it strikes the spring, what is the maximum shortening of the spring?

2.8-12 A bungee jumper having a mass of 55 kg leaps from a bridge, braking her fall with a long elastic shock cord having axial rigidity $EA = 2.3 \,\mathrm{kN}$ (see figure).

If the jumpoff point is 60 m above the water, and if it is desired to maintain a clearance of 10 m between the jumper and the water, what length L of cord should be used?

